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A comprehensive approach to the health management
of the complex air transportation system requires the
ability to analyze large sets of discrete sequences for
anomalies. These discrete sequences can arise from

, , sensors or actuators in the system or from actions of
Abstract—We present a set of novel algorithms which we

call sequenceMinethat detect and characterize anomalies multiple humqns in the sy_stem. I_n the latter case, for
in large sets of high-dimensional symbol sequences that€xample, a pilot and co-pilot activates a sequence of
arise from recordings of switch sensors in the cockpits of Switches inside the cockpit to help maneuver the airplane
commercial airliners. While the algorithms we present are for a safe landing.

general and domain-independent, we focus on a specific Tpig paper addresses the problem of identifying

problem that is critical to determining the system-wide e .
health of a fleet of aircraft. The approach taken uses anomalous switching events given a large set of them.

unsupervised clustering of sequences using the normalized This paper overvi§W$equenceMinera. novel set of _

length of the longest common subsequence (nLCS) as afast, scalable algorithms developed to discover anomalies
similarity measure, followed by detailed outlier analysisto  in large sets of sequences of discrete symbols. We
detect anomalies. In this method, an outlier sequence is compare the results of the new algorithms to standard

defined as a sequence that is far away from the cluster . . .
centre. We present new algorithms for outlier analysis that implementations of Hidden Markov Models.

provide comprehensible indicators as to why a particular More formally, we consider the problem of finding
sequence is deemed to be an outlier. The algorithms provide anomalies in a sef = {51, 5,,...,5,} of n discrete

a coherent description to an analyst of the anomalies in the sequences. We assume all symbols are drawn from a
sequence when compared to more normal sequences. In thefinite but large alphabel = {a1, as, . ..,ax } with M

final section of the paper we demonstrate the effectiveness
of sequenceMiner for anomaly detection on a real set of symbols, and that sequensg has lengthl;. The length

discrete sequence data from a fleet of commercial airliners. Of @ sequence is simply the number of characters in the
We show that sequenceMiner discovers actionable and sequence.

operationally significant safety events. We also compare \\e divide the problem of finding anomalies in se-
our innovations with standard Hidden Markov Models, and quences into two parts:

show that our methods are superior.* } ]
1) Anomaly Detection: Given a set of sequences

Index Terms—Discrete symbols, sequences, anomaly de- identify anomalous sequences, that is, sequences
tection, fault detection, diagnosis, integrated system ladth that are considerably different from the other

management .
sequences iry.
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ment project. granularity: the first problem is to identify anomalous



sequences, while the latter task is to identify anomaliesNASA developed a distributed archive of flight-
within sequences. This formulation of the problem isecorded data retained at seven participating airlines. Th
general and independent of any specific domain. Thuagrlines are currently adding over 100,000 flights per
the resulting algorithms are general in their scope. month to this archive. The archive currently has over
We have built this methodology to address a ke,000,000 flights. This national archive was transferred
question in the aviation safety domain. We assume tHgtthe FAA in September 2007 and is expected to be used
we are given a set of sequences that correspond td0 study events and trends in the performance of the air
landings of a specific aircraft make and model at a spansportation system from the system-wide perspective
cific airport. The symbols that are recorded correspor@@ross airlines. For the algorithms to gain adoption in
to the switches in the cockpit of the airplane. As the pildhe aviation safety community, the unigueness, repeata-
undergoes maneuvers to land the airplane, he or she flijity, comprehensibility, robustness, and scalability o
switches and manipulates other control mechanisms. T solution are critical for safety analysis. Algorithns o
sequence of switches that a pilot flips during the cour$eethods that do not meet these criteria are less desirable.
of the landing phase of the flight corresponds to thEhe set of algorithms described here can be used for
sequenceS;. Notice that in this scenario the duratiorstudying a variety of safety related issues, including
of the landing phase can vary from flight to flight an¢hange-in-runway maneuvers, mode confusion, and pilot
not all switches in the setd need to be flipped in fatigue issues.
each flight. Therefore, the sequence length is variable,We consider this work to be an important extension
as is the set of symbols that appear in a given flighQ Integrated System Health Management (ISHM) [4]
A recent paper [1] discusses the domain problem @apabilities for aircraft systems as the goal is to evaluate
more detail and elucidates some of the difficulties ithe overall system health of a given class of aircraft at
addressing it using standard methods. An example @afparticular destination.
the kind of anomalies the system targets for detection are
mode awareness problems, such as confusion about the
current state of cockpit automation. In our application,
we are analyzing a set of data that arises from a fleet of There are a number of data analysis problems where
commercial aircraft, where ~ 8000, M ~ 1100, and the data set consists of sequences of discrete symbols,
I; varies from about 00 to over10, 000. and the sequential nature of the data is important to the
The nature of this application domain requires thanalysis. The discrete symbols may represent:

the algorithm work under several key constraints given , commands and calls to a system, such as a computer
a fixed data seb. We require that the system be: network [2]

« Unique The system should find a unique solution. * Seduences of transactions, such as data from online
banking transactions and supermarket purchase data

» RepeatableThe system must provide a repeatable [3] o _ )
solution. Thus, each time the system is run it ® biological information, such as gene protein data
should identify exactly the same set of outliers. and medical events [S][6] . .

« sensor recordings from machines, such as discrete

. ComprehensibleIf the system identifies a set of ~ SENsors in aircraft [7] -
outliers, it must also generate an explanation as to® online navigation patterns from website click stream

why the sequences were called outliers. data [8] _ _ _
« discretized time series data from astronomical or
« Robust The performance of the system should not ~ 9eological data [9]
be critically dependent on the quality and amount The most common methods of analyzing sequential
of expert input. The initial solution should be aglata are based on unsupervised learning algorithms such
off-the-shelf as possible. as clustering, followed by anomaly detection. Anomaly
characterization is usually not analyzed formally as a
o Scalable The system performance should noseparate problem, though some approaches to anomaly
substantially degrade as the number of sequenabstection are more amenable to a subsequent step of
increases. Thus, the complexity of the algorithrmanomaly characterization than others. Most clustering
must be better than afi(n?) computation. and anomaly detection in sequential data can be per-
formed using two classes of methods [10] known as

Il. BACKGROUND AND RELATED WORK



parametricor model-based approaches atidcrimina- an interpretable model for the data. Once the parameters
tive approaches. We briefly describe these approachesdnare learned the resulting model can be interpreted in
the next two sections and provide a discussion of theilumerous ways. For example, suppose we are trying
respective advantages and disadvantages. to detect anomalies using an HMM in a data set of
sequences. If we discover that a particular sequence
has been assigned a low probability by the HMM, one
_ ) can study the transition matrid in order to determine

A parametric or model-based clustering approaGihich state transitions were instrumental in reducing
learns a generative model from the data. This mod@e |ikelihood of the sequence. However, HMM based
typically has a formal mathematical structure and i§pproaches suffer from a number of drawbacks that
parameterized by a set of parametéds The most yjolate the requirements of the research topic of this
nature_1| and commonly used models for sequential daégper, namely that they often do not scale to real
are Hidden Markov Models (HMMs) [11]. life data sets [10], and that the training may require

Hidden Markov Models are a natural parametric apsignificant manual intervention, experience with the data,
proach for modeling sequential data. In his oft-citegnq judicious selection of the model, the parameters, and
paper, Rabiner [11] gives an excellent overview of thgyitialization values of the parameters [11][12].
model and its associated learning algorithms, which we |, this paper, we characterize the scalability of HMMs
summarize here. The HMM is parameterized by thgnq their sensitivity to initial conditions. In the absence
tuple © = (N, M, A, B) (this notation is derived of sufficient input from domain experts, the training
from Rabiner’s paper, and the symbil has a different pnase may result in the system converging to a local
meaningfr_omthatdefined i_n Section I.is the number minimum. While some variance in the results may be
of states in the model) is the number of symbols acceptable, in the worst case, separate runs on the
generated by each statel is an N x N matrix of gsame data set may result in the system converging to
transition probabilities wherel;; is the probability of gypstantially different minima, resulting in substarigial
transition from statgj to statei. = is anNV x 1 vector gifferent anomalies being flagged each time. This might
of initial state probabilities. FinallyB is an N x M yndermine the confidence of the end-users in the results
matrix that gives the probability of observingaparticulat‘r}iven by the system. In a later section of this paper,
symbol given that the system is in one of thestates. \ye demonstrate the use of the HMMs on the problem

quences generated from HMMs. Suppose that someqfgthods that we develop here.

is given N urns, each containing a different distribution
of M colored balls. Suppose that he/she then chooses = = =
the first umn (representing the first state) according & Discriminative approaches
the probability distributionr, and then draws a ball out Complementary to the parametric approach are the so-
of the the chosen urn, notes the color of the ball, armhlled discriminative approaches, which rely on a sim-
replaces it in the urn. Then, according to the transitiatarity function K(S;, S;) that measures the similarity
matrix A, the person chooses the next urn, draws a balletween two sequences. Once a similarity funcfiois
and notes the color. If this process is repedfetimes, established, most clustering methods work by allocating
the resulting string of colors would represent a sequensequences to one @f possible clusters in such a way
generated from a Hidden Markov Model. To address thkat the within-cluster similarity is maximized, while
problem in this paper with a Hidden Markov Model, oneéhe between-cluster similarity is minimized. There are
would need to learn the parametés= (N, M, A,x, B) a multitude of algorithms to accomplish this task. Hay
given a set of sequences. Once the parameters of ednal. [8] and Banerjee et al. [14] discuss traditional
HMM have been learned, we can compute numeroghistering methods based on the use of a similarity
important quantities, such as the probability of observingeasure. The most common similarity measures used for
a new sequence and the most likely sequence using Hegjuences are the edit or Levenshtein distance [15], and
standard algorithms discussed in [11]. the length of the longest common subsequence (LCS)
Parametric approaches such as HMMs are we[lt6]. For anomaly detection, after clustering is com-
researched and theoretically well-motivated. They amdeted, the sequences which have low similarity scores
interpretable, and are known to outperform other aprhen compared to other sequences may be flagged as
proaches for certain anomaly detection tasks [13]. Amnomalous. This implicitly assumes that the clusters that
other advantage of these approaches is that they provate found are stable, that is to say, that the inter-run

A. Parametric and Model-based Approaches



reliability of the clustering is high. In the event that thiset. The search space is restricted to reduce the compu-
assumption is violated, one clustering run may indicatetational expense. The most common randomized algo-
set of anomalies which are not corroborated by anothethms are CLARA [21] and CLARANS [22]. Though
subsequent run. these algorithms were initially designed for spatial data

The chief advantage of discriminative approaches liesd are generally used for very large data sets we find
in their scalability. With data sets consisting of a largthem to be very useful for clustering sequential data sets
number of sequences, or those that have long sequentesause they do not require the data to be embedded
discriminative approaches are often the only optioin a vector space. Moreover, they attempt to minimize
However, the significant disadvantage of discriminativine number of comparisons between data points. This
approaches is the comparative lack of interpretabilitis important even for medium-sized sequential data sets
While these algorithms can be used to find anomalodse to the potential 0O (n?) computation (where: is
sequences, they provide no clues on how to interpret tthee number of sequences in the dataset). We prefer them
anomalies. The results need to be interpreted manuaklydensity-based algorithms such as DBSCAN [23] and
by experts, which can have high overhead costs and ma@F [24] for the same reason.

result in a highly subjective analysis. Our use of randomized clustering algorithms may con-
Algorithms for discriminative clustering of sequentiaflict with our uniqguenessndrepeatabilityrequirements,
data can fall into one of the following categories. but we note that if one were willing to sacrifice speed,

1) Graph-based clusteringi14][17]: These methods one could substitute a longer running deterministic clus-
perform either agglomerative or partitional clustering algorithm such as hierarchical clustering for the
tering. randomized clustering algorithm. In any case, given a

2) Representative sequence based clustering aglustering of sequences, no matter how those clusters
proaches[2]: A representative sequence, usuallyvere derived, our anomaly characterization techniques
the sequence with the highest average similarigre deterministic and so meet ouniquenessand re-
to other sequences in its cluster, is chosen durimgatabilityrequirements.
each iteration. The approach described in this paper is to create a

3) Indirect Clustering[18]: A set of features is ex- set of clusters using the length of the longest com-
tracted from the sequences. The results depembn subsequence similarity measure and then identify
greatly on the features extracted. anomalous sequences as those that have low average

Another approach is that of using classifiers to detesimilarities t(_) the clusters that were discovered. We then
anomalies, such as is done by Szymanski and Zhafigvelop a principled approach to the problem of anomaly
[19] and Evangelista et al. [20]. In this approach thegharacterization based on this similarity measure. The
examine sequences of Unix user commands by findiggPability to characterize the identified anomaly is key
dominant patterns in sequences, replacing them wii® enable decision makers to understand the nature of
symbols, and then recursively finding the next set dhe anomaly. The main steps of the approach are the
dominant patterns, et cetera. They then extract statistiéallowing:
features describing these re-encoded strings and use &) Cluster the sequences into groups using the nor-
support vector machine to discriminate between normal  malized longest common subsequence (weighted

sequences and intrusion sequences. edit distance metric) as the similarity measure. The
clustering algorithm we use is the randomized k-
I1l. OUR APPROACH medoids clustering algorithm CLARA [21].

For each cluster, rank order the sequences in
increasing order based on their similarity score
with the cluster medoid.
3) Identify a certain percentage of the lowest scoring

sequences as anomalies.

) ldentify the regions in the most anomalous se-
guences that deviate most compared to the other
sequences in the cluster.

We use a discriminative approach for the task of 2)
anomaly detection. This gives us the traditional ad-
vantage of scalability provided by these approaches.
We develop new algorithms for the task of anomaly
characterization to improve the interpretability of the
methods.

To further improve the speed and scalability, we use a
randomized clusterinpased approach, which is a novel
method for analyzing large repositories of sequentidhe next section describes the longest common subse-
data. In randomized clustering we search for medoidgsience similarity measure, which is key to the clustering
that represent a randomly chosen region of the entire datad anomaly detection algorithms discussed in this pa-
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per. exists with algorithms that attempt to improve the run-
ning time for inputs with certain properties. A survey
of LCS algorithms by Bergroth et al. [31] divides such

A. Longest Common Subsequence algorithms into three groups and compares their results

The longest common subsequert€s) is a popular empirically. The comparison turns up no clear winners.

measure in the string analysis and intrusion detecticyxﬁ_ l:]SGd a yar|art]|0n of the Hurlwt-Szymans]tq aCIgSorltIhm,
communities. We use the normalized length of thwhich remains the most popular group of L algo-

longest common subsequence (nLCS) as the similarf't ms, since it is relatively easy to implement. Details
lated to the Hunt-Szymanski algorithm can be found

measure for comparing two sequences. Given two &
quencesX andY of lengthsly andly respectively, we " [28]
calculate thex LC'S(X,Y) by the formula:

IV. ANOMALY CHARACTERIZATION

ILCS(X,Y)| . o
— (1)  We defineanomaly characterizatioras the task of
Ixly identifying the reasons why a particular data point (se-
In order to understand this formula, we begin with guence) was labeled as an anomaly. This is an essential
few definitions. Given two sequencéS andZ, Z is a step if we have to meet our requirement of comprehensi-
subsequence ok if removing some symbols fronX  pility. For data embedded in a vector space or following
will produce Z. Z is a common subsequence of twaa known statistical distribution anomaly characterizatio
sequences( andY if Z is a subsequence df andY. can often be performed easily. For example, in a vector
The longest such subsequence betwéemndY is space if a data point is considered anomalous it can be
called the longest common subsequence and is denote¢ause it has an abnormally high/low value along one
asLCS(X,Y). We represent the length ¢fC'S(X,Y) or more dimensions which can be discovered through
as|LCS(X,Y)|. The length of the LCS is a very effec-manual inspection. On the other hand, if we are using
tive measure because it measures similarity between teogenerative model such as an HMM, it is possible
sequences without restricting itself to a location-based characterize an anomaly using the transition and
one-to-one match. The longest common subsequence eamput matrices. However, when using discriminative
be seen as a special type of edit distance. Given tpproaches based on a similarity measure it is often
sequences, the edit distance between them is defingfficult by inspection alone to determine what aspect of
as the number of operations required to transform ofige sequence makes it anomalous after a sequence has
sequence to another, multiplied by the cost of eadieen identified as anomalous. In cases where the data
operation. The three commonly recognized operatioget consists of relatively short sequences of say 10 to 15
are addition, deletion, and substitution. Maximizing theymbols it may be possible to characterize a sequence
LCS for two sequences is equivalent to minimizing aas anomalous based on manual analysis. However, as the
edit distance function where the cost of addition ani@gngth of sequences increases this becomes increasingly
cost of deletion are both equal to 1, and the cost aifficult. This is because most sequence clustering algo-
substitution is equal to 2 [25]. For the other commorithms treat the edit distance-based similarity measures
edit distance, the Levenshtein distance [15], the cost @§ a black box.
insertion, deletion and substitution are all equal to 1.  For Integrated System Health Management (ISHM)
The LCS metric has an optimal substructure propertgpplications in particular, it is necessary to know what
which is the foundation of a well-known dynamic proimakes a particular sequence anomalous to enable diag-
gramming algorithm [16]. Given two sequenc&sand nosis and possible recovery. Manual analysis can be time
Y, the algorithm constructs a two-dimensional tallle prohibitive and may require significant domain expertise.
of size lx by ly. An entry L(4,7) in the table gives  This section describes our approach to automatically
the length of the LCS between the firstsymbols of characterize anomalies within a given sequence. Our
X and the firstj symbols of Y. More information system provides detailed information about the atypical
on the optimal substructure property and the dynaméwents inside the sequence. The non-ordinal nature of
programming algorithm can be found in [16]. the symbols in discrete sequences influences the kind of
The time complexity of the algorithm i9(/?) (where anomalies that can be found in this type of data. We
[ is the average length of a sequence in the datasefipssify the kind of anomalies that can be found in this
which makes the algorithm computationally intensive fodata into two categories, with a third case corresponding
long sequences. A vast amount of literature [28][29][3Gp a composite of the other two categories:

nLCS(X,Y) =



1) Missing symbols: A symbol was expected at a
position in the sequence but was not present. |n
terms of our domain problem, this corresponds to
situations where a pilot was expected to press|a
switch at a certain point in the flight sequence, byt
did not do so. .

2) Excess symbols:A symbol was not expected at \
a given position in the sequence but was present.
This corresponds to a case where a pilot presses a
switch but was not expected to press it given the
observed flight sequence.

In the third case a pilot presses the correct switches
with respect to the flight sequence but in the wrong order. » _ y
This case is covered by the above two cases as follov%?' 1. A depiction of the Bayesian network used for the dbjec

| Yy . . ction. The probability of an outlie© is dependent on the cluster
suppose that there are two switchdsand B, and switch member sequences;, which in turn are dependent on the centraid
A is supposed to be pressed before swi:hHowever, ©f the cluster.
it could happen that a pilot press&sbefore A. In such

a case, we can say tha is missing from its location

after A and an exces# is present beforel. For a clusterZ, let C € Z be the centroid) € Z be

The approach we take to identify such anomaliafe outlier we need to analyze for anomalies. Then let
inside a sequence consists of the following steps: first = {S;, S,,..., Sy} be all the sequences i except
we define arobjective functior¥ to help identify outlier . In this case, we want to maximize the probability
sequences. The value & for a given sequence is thatO is generated front, that is to say,P(O|C). As
a function that evaluates the similarity 6! with the mentioned earlier, the length &; is represented ak.
cluster to which it has been assigned. A reasonatdgmilarly, the length ofO is represented ak, and that
objective function is a weighted mean of the normabf C asi..
ized longest common subsequence score (NLCS) of theing the Bayesian Tree framework, we note that
outlier sequence with all the sequences in the cluster. N
Alternatively, we construct a generative model for the _ 3. _
sequences in a cluster and deriefrom this model. poje) = ;P(()'SZ) Psi|c) @

In the second step, we identify modifications (adding
or deleting symbols) in an anomalous sequence thatThis is the Bayesian Tree depicted in Figure 1.
generate higher values of the objective function. Wassuming P(O|[S;) oc nLCS(0,S;) and P(S;|C) o
use the termprofitable for such changes. That is, anLCS(C,S;), we obtain:
modification to a sequence is said to be profitable if it N
increases the objective function score for the sequence. P(O|C) o Z"LCS(O’ S;)-nLCS(C,S;)  (3)

i=1

Hence, in the case of a Bayesian Tree based model for a
cluster, the objective function to be maximized is given
We construct a simple generative probabilistic modély:

A. Bayesian Model for the Objective Function

for a cluster using a Bayesian Tree framework. We N

assume that the probability of generation of the outligr(0, z/) = ZnLCS(O, S;) -nLCS(C, S:)

from each sequence is proportional to the normalized =1

LCS score between the sequence and the outlier. We N

model each sequence in the cluster as being generated = Z ILCS(O, 50)| . ILCS(5:, )l
from the centroid sequence with a certain probability. i=1 loli Viile

The centroid sequence is a sequence identified from 1 N ILC'S(0, S;)||LCS(S:, C)
within the cluster as most representative of the entire = Jlole. Z L

cluster. The clustering step using CLARA provides as a 0% = ’

side-product a candidate centroid sequence. We use this
sequence as the centroid. We can ignorelc as the length of the centroid is



constant.Hence, the objective function is given by: O that maximizeF(O, Z'), we can set alby;, = 1 and

N seedO with a dummy sequence of length 1, containing
1 Z [LCS(0, S)[|LCS(Si, O) 4) a single character that does not exist in any of the other

Vio P l; sequences. When our algorithm discovers the additions

d deletions required, performing these operations on

will give us the median string. Informally, we can say

t the problem of finding changes @ that maximize

0, Z’) and the problem of finding the median string

F(0,7') =

In general, an objective function based on a Bayesi
Tree model is more effective when the cluster is lar
and can be said to contain small sub-clusters because
Bayes net model optimizes with respect to the sequence , :
most similar to the outlier. We now discuss another' & set of sequences’, are equivalent.

objective function which may be used in place of the I—!oyvever, the median string problem is known to -be
Bayesian Tree model. a difficult problem: the decision problem corresponding

- - to the median string problem has been shown to be NP-
Given an outlier sequena@ and a clustet?’ = 7 —
{0,C}, a weighted r%ean-based objective functibn complete for unbounded alphabets[27] and for bounded
can be,given by: alphabets [26] for the Levenshtein distance. While a
' similar proof does not exist for the LCS metric or for

A N our nLCS metric, no fast polynomial time algorithm
F(0,7") = Zai -nLCS(0,S;) (5) is known to the best of our knowledge to optimize
i=1 this function for any popular distance measure. For

Here N is the number of sequences in the clustethis reason, we are pessimistic that we could find an
The weighto; can be set as equal for all sequencegjgorithm to find an optimal solution to the function
or alternatively, it may be set as proportional to som&(O, Z’). Hence, we take the approach of developing
score (such as the nLCS score) of the sequence with #lgorithms that do not try to find the global minimum
centroid. but that converge to a local minimum in bounded time.

Expanding the value o8 LC'S(O, S;), we get:

V. ALGORITHMS FORANOMALY
N

- 1 LCS(0, S; CHARACTERIZATION
F(o,Z'>:T-§jai-% (6) , o
O =1 i We now analyze the impact on the objective function

The weighted mean-based objective function can offgfven different kinds of changes to the anomalous se-
better performance when the clusters are small afgences. This analysis will help us find the changes that
homogenous since it assumes that the outlier is apprd¥l! improve the objective function. The algorithms we

imately equidistant from the cluster sequences. discuss identify changes that will improve the objective
function until it reaches a local maximum. The changes

discovered will point in the direction of the anomalies

B. Objective function: Discussion ) : . e
o A ] ) _inthe sequence being analyzed. We focus on identifying
The objective functior(O, Z’) described in equation 1,4 kinds of changes:

(5) can be seen as a more general case of equatio . . -
(4). Our task now is to develop algorithms that will |1) Profitable deletions: These changes indicate the
non-essential symbols in the anomalous sequence.

identify changes in any outlier sequer@eto maximize _ o ;
its similarity F(O, Z') to a cluster. Let us now consider 2) Prpﬂ_table addltlons. These changes point us to the
missing symbols in the anomalous sequence.

a special case: if we set; = 1 for all sequences, this

problem becomes closely related to theedian string In our analysis below we use the Bayesian Tree based

problem objective functionF" given in equation 4. The analysis
The problem of finding the string that maximizedor the weighted-mean based objection functibnin

the similarity (or minimizes the distance) to all theequation 6 is very similar.

sequences in a given set/cluster is known as the median

string problem [26][25]. It is an important problem in

areas such as bioinformatics and pattern recognition.Att

is easy to see that the median string problem for nLcgrence

is at least as hard as the problem of finding the changedn order to compute the change in the objective

to make to a sequend@ to maximize (O, Z'): if we function F(O, Z') of an outlier/anomalous sequenée

have an algorithm that can identify changes to a sequeneith a set of sequence$’ and centroid”, if a symbolh

Identifying profitable deletions in an anomalous se-



is removed from the sequence, we begin with the valwe not. If the deletion is found to be profitable, the
of F' beforeh is removed. This function is given by: deletion is ‘accepted’, that is, it is assumed that the
N deletion is made and the valuesBfandiy are updated
FO,7') = 1 Z |LCS(O, S;)||LCS(S;, C)| % accordingly.
i=1

Vio & I

Now remove a single symbdt from O. The change
would have the following impact:

Algorithm Complexity:For simplicity, let the length of
all the sequences in the cluster bd_et the number of
sequences be. Step 2 compares the outlier sequence
o The length ofO will decrease by 1. with all the sequences in the cluster and has a worst-
« The lengths ofLC'S(O, S;), for which 1 is a part case complexity ofO(ni?). Here O(i?) is the worst-

of LCS(0, S;), will decrease by 1. case time taken to compare two sequences. Since the
« The LCS lengths for all other sequences will remainumber of symbols that can be removed from the outlier

unchanged. sequences is bound bythe upper bound on the number

Let the value of the objective function that arises as Y imes steps 3 and 4 are executed.iShe time taken
result of the deletion ofi be represented by’ (O, Z). by these steps is also bounded®§/). Hence the overall
Then F'(0, Z) will be given by: complexity of these steps (/%) and the complexity

of the algorithm is given by)(nl?).

1
F'(0,Z") =
vio —1 B. Detecting profitable additions in an anomalous se-
< 3 (ILCS(0,S;)| —1) - [LCS(S;: C)  quence

Lj We start with a simple example to explain our ap-

|LCS(0, Sk)| - [ILCS(Sk, O)] proach to calculating profitable additions. We focus only
on improving the score (ignoring n or now

] i ing the LCS (ignoring nLCS f )

{S;|lheLCS(0,S;)}

LS

{Sk[hgLCS(0,5%)} l and also assume all sequences are weighed equally irre-
1 N |LCS(0, $;)||LCS(S;, C)| spective of length and distance from centroid. Suppose
= \/lo——l[z l; we are analyzing an outlier sequen@e= ABDE and
i=1 we are comparing it to a single sequertte= AFGDE
_ Z [LCS(S;, C)|] to identify what additions we can make &@to improve
(5,1heL08(0,5,)} j our similarity with S;. The LCS betweerO and S;

is ADE. We can insert characters at five locations in
ABDE: immediately before A, B, D, or E, or imme-
Letbr = 3 (s, (hercs(0.5,)) LCSI(Sij)_ Substitutingy,  diately after E. Two possmlg proﬁtaple ad@uons dre
andF(O Z) in the above equati]on' andG both of which can be inserted immediately before
’ ' eitherB or D. Note that becausB is not part of the LCS

1 betweenO and S;, any character that can be inserted
F'(0,7") = Vi -F(O,Z")—b 8 1, any
( ) Vio — 1( o~ F )=t @ before D can also be inserted befofeé. Now suppose
It can be shown that, givert symbols at different there is anothe_r sequence |n.the.clus$gr: AFDE.
locations, all with same value &f, = b: The LCS of this sequence witt? is ADE. The only

1 profitable additions t@ with respect taS, are F' before
(Vo -F(O,Z")y—k-b) (9) B, or F beforeD. HenceF before B or D is a more
Vio =k profitable addition tharG before B or D because the
A simple algorithm to find all profitable deletionsinsertion of F' improves the score with respect to both
from an anomalous sequences can be seen in FigieandS.
2. Step 2 of the algorithm calculates the objective We need to introduce some notation to formalize this
function F for the outlier/anomalous sequencg It intuition. For any sequencé;, we refer to thep'”
also calculates;, (defined above) for each symbol. Thecharacter in the sequence &gp). For a charactes; (p)
smaller the value ob;, for a symbolh, the greater the that is part of the LCS betwees} andS;, we define the
probability that removing it will increase the value ofmatchof p in S; written asMﬁj (p). This is the character
F'. Hence the algorithm searches fgy,,, the smallest in S; that was matched with the character at locaion
value for b, in each iteration, and calculates whethein S; as part of the LCS computation. For example, let
deleting the symbols with,;, = b,,,;,, shall be profitable S; = ABCED and S, = PBD(Q. The LCS between

F'(0,7') =



Input: Outlier sequenc®, centroid sequencé'

and sequenceg’ = {S1,...,Sn} )\?‘ (p) = max M? ) (10)
Output: D, the list of profitable deletions i, ' lsp'<p ™
in decreasing order of importance. We next define theipper neighboorhoad-or a char-
Step 1: Declare array b of length. acterS;(p) that has a nonzero match with (Mﬁj (p) #
b[l...lp] = 0. 0) we define the upper neighborhood as the match value.
If M? (p) = 0 we define it as the match of the smallest
fStep 2:1<:talculatdf(O,Z’), andby,. p > p such thatMyg (p') # 0 that is S;(p') has a
ori:=1ton

nonzero match withf;. Formally we write this as:
Get the LCS ofO with S;.

For eachh € LCS(0, S;),

; 5; S; 5,
Setb[h] = b[h] + LESE5L v (p) = MY (p), Mg (p) #0
SetF = F + |LCS(0, S;)| - LLES(C:50l —m Sj( iy
ILCS(0, 80 - =52 somin Mgi(p),  Mg(p)=0 (11)
Step 3: Repeat: For a characterS;(p) we call the closed interval
a)Find the next symbol to be replaced. between its lower and upper neighborhood with respect
Find by,in, = min(b). to S; as its neighborhoodin S;. We write this as
Find H = {h|by = bmin} 77? (p) = ()\gj (p),v3’ (p)). We say that a character,
Setk = [H|. is in the neighborhood of;(p), with respect toS;, if
there exists am such thatS;(r) = a4, and A% (p) <
b)Calculate new value of F s, . 7 g
SetF . — F ' r < vyl (p). Thatis, there is a locationin n¢’ (p) such
F— o Vo - F =k by that S;(r) = a,. We write this asz, € n?f (p). For two
= V=% (Vlo - F'=k-bmin) sequencesS; and S;, for a characterS;(p), insertin
If F>Fpa N i and oj, 1 iD), g
Addhe HtoD any character in its neighborhood withy, into S;, will
Setb[h] = max+1, for allh € H. increase its LCS wittb;. . . , .
SetO =0 — H We return to our task of discovering profitable addi-
Setl — Ly — k. tions in an outlier sequena®@ with respect to a set of
until F < Fz(: © ' sequenceg’. We now know that inserting any character

a, beforeO(p) will improve the LCS with a sequence
Step 4. All profitable deletions are stored fih Sy if and only if a, € 75'(p). The resultant change in
the nLCS over all sequence®s = {5, S2,...,5,} can
ReturnD. . ! .
be calculated for all pairs ab(p) anda,. We write this
asb,q, and it is given by the following expression:
; |ILCS(5;, O
bpq = Z - .
Silag€ng (p)
An analysis similar to the one used to derive equation

) shows that adding a symbae), beforeO(p) changes
the objective functior¥'(O, Z’) as follows:

Fig. 2. Algorithm to Detect Profitable Deletions

(12)

these two sequences is given By). Then,ng (2) =2,
Mi; (3) = 5. For characters that do not have a match i
the other sequence, we set the match value. tm the
above example, we saly]lgf (3) = 0. We also define

Mg (i +1) = [; + 1.

1 .
F'(0,7') = -(Vlo - F(O,7Z) +b,,) (13
We define theower neighborhooddf S;(p) with S; ( ) lo+1 (Vio- I ) ¥ ba) (13)
as the match of the largest < p such thatS;(p’) hasa  gimilarly, addingk symbols to a sequence at various

nonzero match witts;. If there is no such character, wejgcations, such that alt symbols have the same value
set the lower neighborhood to In the example above, ¢ by, = b, will give changeF (0, Z') as follows:
the lower neighborhood fof;(3) with respect toS,

is 2. We write this as\3?(3) = 2. Also, \$*(2) = 0,

1 N
as there is no character befasg(2) that matches with (0, 2’) = =7 (Vo - F(O,Z") +k-b (14)
a character inS;. Formally we can define the lower o R
neighborhood as: We can now construct a two dimensional matbix



with (Io + 1) rows and}M columns (/ is the alphabet | Input: Outlier sequenc® and centroid”, and

size, A = {ai,as,...,an}). by, represents the | sequenceg’ ={S,...,Sn} N
improvement in score as a result of inserting characterOutput: D, the list of profitable additions t6.
a, immediately before the character at locatipnin in decreasing order of importance.

O (except for the last row, which contains scores for R _
insertions immediately after the last character). We canStep 1: Declare array of sizelo by M.
then construct an algorithm that calculatgg for all | Setb[l...lo][l...M] =0

values ofp and ¢, and then selects the character with Setl’ =lo, U[l... M] = 0.
the best value ob,, at each step. Such an algorithm ig

given in Figure 3. Step 2: Calculaté"(0, Z), andépq for O.
fori=1ton

Algorithm Complexity: Get the LCS ofO with S;.

Again, let the length of all the sequences in the cluster ~ SetF' = F' + |LCS(O, S;)| - %

be!, and the number of sequencesheand the the total forp=iotol

number of unique characters bel. The comparison if MJj(p) #0

step and the construction df will take O(nl?) as if ag € ny

discussed for the previous algorithm. The next step Ulq] = w

requires searching for the largest valuetiran array else '

of size M x I. This step can be sped up by sorting U[q] = O.

the array in descending order, which can be done In bplll...M]=0b[p][l...M]+ U[l...M].
time O(M! - log(MT1)). Hence the overall complexity is
O(n - 1? + Ml - log(M1)). Step 3: Repeat:

a)Find the next set of missing symbols.
Find b4 = max(b).

C. Reconstructing Missing Symbol Sequences Find H = all (p, q) pairs s.t[pl[g] = brmas.

The algorithm given in Figure 3 can only detect the Setk = |H|.
symbols that should be inserted between two symbals
in a sequence, but does not detect the order in which b)Calculate new value of using eq. 9.
they might be inserted. For example, the algorithm might SetF,, = F.
say that symbold and E should be inserted between F=—" (VT -F+k-b)
symbolsA and C in a given outlier sequence, but not If F ﬁd
whetherDE or ED should be inserted. Add (p,q) € H to D.
The algorithm in Figure 4 reconstructs the missing Setb[p][q] = 0¥(p, q) € H.
sequence of symbols in the gaps in the original Setl’ = I’ + k.

sequence. Essentially the algorithm in Figure 4 acceptsyntil r < F,;,.
the most profitable addition suggested by the algorithm
to detect profitable additions (Figure 3) at each stepstep 4. All missing symbols and their locations
and updates the current outlier sequence accordinglygre stored inD.

In this way the algorithm is able to make reasonable ReturnD.

SqueStlons abpm the “kely. sequence of the n.“.SS";:%. 3. Algorithm to Detect Profitable Additions
symbols identified by algorithm 3. Our empirical

experience shows that the algorithm provides reasonable

reconstructions.

at least once in any one of the sequenses. . S, the
Algorithm Complexity: maximum number of such characters is bounded by
We can perform a worst case complexity analysis of th@(nl). Thus the maximum number of iterations steps
algorithm as follows: let the length of all the sequencez5 shall be executed is given 8y(nl) and the overall
in the cluster be and the number of sequences e complexity can be described #(n?/). However, in
Let the total number of unique characters bheThe our experiments, we found that the number of characters
complexity of Step 2 as calculated earlier is givethat met the insertion criterion of Stepd was usually
by O(nl?). Since any character to be added at amyf the orderO(l), and notO(nl). Hence, the running
location in the outlier sequence in Step 5 has to occtime of the algorithm was usually of the ordéxni?).
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Input: Outlier O,centroidC, and

7' = {Sl, . ,SN}, and
A={a1,...,anm}.

Output: The subsequences missingln

Step 1: SetD’ = O.
Step 2: Repeat:

a)Run Step 2 of the profitable
additions algorithm in Figure 3

to get values ofF'(O, Z’) and the array.

b)Find b,,,... = (p, ¢), the location
in array b with the maximum value.

c)Calculate the new value of F.
SetF,s=F.

F:m-(m-F—kk-b)

d) If F < F,4, updateO’ by inserting

is the reversal of one of the seed sequences. The final
size of the data set is therefore 2001 sequences.

2) Efficacy of sequenceMineWhen we run this syn-
thetic data through sequenceMiner it is able to discover
each of the four clusters. SequenceMiner does not insert
subsequences into sequences incorrectly. As expected,
sequenceMiner gives lower scores to those sequences
with a greater amount of mutation, since they are more
anomalous. The results are summarized in the table in
Figure 5.

By looking at the mean and standard deviation of the
sequence scores in Figure 5 for each cluster and for each
degree of mutation, we see that there is a significant dif-
ference in anomaly scores between the different degrees
of mutation, and that the scores are consistent across
the clusters. We also calculate the anomaly score for the
outlier point to be 0.18, showing that sequenceMiner can
easily distinguish a distinct outlier in the data set.

3) Comparison with HMMs:Next, we run Hidden
Markov Models (HMMs) [32] on the same data set. We

a, beforeO(p).
until F > F4.

run two sets of experiments for the HMMs. HMMs have
no way of clustering the sequences prior to learning the
model. Thus, in the first set of experiments we simply
supply the HMM learner with all 2001 points. As a
result we have a single HMM modeling the entire data
set. In the second set of experiments, we divide the
data set into four subsets corresponding to the clusters
discovered by sequenceMiner. We then generate four
HMMs, each corresponding to a specific cluster. For
both sets of experiments, we varied the number of

We ran our experiments on two sets of data. The firstates in the HMM between 3 and 48, and perform five
is a synthetic data set which we use to demonstrate tigferent runs for each set of parameters. We use at most
advantages sequenceMiner has over HMMs. The sec@Wl iterations while training, though in some cases the
is a real data set consisting of switch activations for &lgorithm converges in fewer iterations. We use the log
set of airline flights which we use to demonstrate thgkelihood of each sequence as the anomaly score for a
efficacy of sequenceMiner in a real-life scenario. sequence with smaller values indicating more anomalous
seguences.

We would hope that the outlier sequence in our
synthetic data set would be marked as the most abnormal

1) Setup:We generate synthetic data containing fousince it is the reversal of a seed sequence. However, in
clusters of sequences. Each cluster is defined byoar experiments using a single HMM to model the entire
seed sequence that is a random permutation of 10fta set the outlier is only marked consistently ((that is
unigue symbols. The seed sequences are then mutateday, for all 5 runs for a given set of parameters) as
slightly to provide some variation. Mutations includehe most abnormal when there are 32 or more states in
the insertion, deletion, or the transposition of symbolsie HMM. When we use an HMM for each cluster, since
in the sequence. We use four different degrees of meach of the HMMs is trained on a relatively homogenous
tation: 5%, 10%, 20%, and 30%. Here the percentagelsister, the outlier is consistently marked as the most
represent the number of mutations (i.e. single deletiorshnormal with respect to all 4 HMMs when there are at
insertions, transpositions) divided by the length of thieast 12 states in the HMMs.
seed sequence. Each cluster contains 500 sequences, aA)l Drawbacks of Hidden Markov ModeldVe noted
there are 125 sequences for each degree of mutationirirsection | that we require that our system meet five con-
this data set, we also include one outlier sequence whistraints: it must find ainiquesolution, it must provide

Step 3: Compar® andO’, to get the newly
inserted subsequences.

Fig. 4. Algorithm to Reconstruct Missing Sequences

VI. EXPERIMENTAL RESULTS

A. Synthetic Data Experiments
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Cluster 5% 10% 20% 30%

mean | std. dev.|| mean| std. dev.|| mean| std. dev.|| mean| std. dev.
0.958| 0.0156 || 0.926| 0.0205 || 0.862| 0.0272 || 0.806| 0.0278
0.954| 0.0148 || 0.924| 0.0195 || 0.862| 0.0246 || 0.804| 0.0310
0.958| 0.0175 || 0.925| 0.0224 || 0.863| 0.0264 || 0.808| 0.0303
0.943| 0.0151 || 0.914| 0.0198 || 0.850| 0.0253 || 0.796| 0.0313

AIW|INPF

Fig. 5. Statistics for the outlier scores for each clustet aach level of mutation.

Number of Iterations versus Average Log Likelihood (No Clustering) Number of Iterations versus Average Log Likelihood (Cluster One)
-650000 . . . . . -100000 . . . . .
3 States —+— 3 States —+—
4 states --x-- 4states --x-—- . ae0 080T
5 states ---x--- 5 states ------ o . -0- O
0-0-00
6 states & 120000 L 6states B p 600 00C o )
-700000 - 7 states —#-- = 0000 7 states -~ O 0000000 07C -1
8states -0 e 8states -0 00 6.0-0-0
9states -~ o 9states -~ L0 0 C 00 .
10 states - &-- g - 10 states - &-- P AR
12 states —+— - 140000 1 15 states - R
@ 750000 | 14 states —— g s * 0 < 14 states —v—
© 16 states --v-- et © 16 states --v--
e 18 states ---o-- o® o 18 states ---o--
o 20 states -+ e G -160000 - 20 states -+
3 24 states —-0-- - -v- 3 24 states —-o--
2 -800000 28 states -+~ o v 8 28 states -+~
3 32 states - -o--- e H 32 states -~ -o---
< 36 states -~ s 2 180000 36 states @ -
> 40 states -0 e > 40 states -0+
o 48 states —o— -0 o 48 states —e—
- -850000 | P -
g8
R -200000
X=X
-900000 |
-220000
-950000 ! ! ! ! ! -240000 ! L L L !
5 10 15 20 25 30 0 5 10 15 20 25 30
Number of Iterations Number of Iterations

Fig. 6. Plots of the number of iterations used for trainingHM versus average log likelihood of the data, for both the MNuilt with
no clustering, and the HMM built from cluster one.

a repeatablesolution, it must provide @omprehensible also takes longer for the algorithm to converge as can be
solution, it must beobust and it must bescalable Here seen in Figure 6. This violates tisealability constraint.
we present results from our experiments showing thht this case, the number of iterations to convergence
HMMs do not meet these constraints. is a measure of scalability. Finally these plots contain
In Figure 6 we plot the number of iterations used tgultiple plateaus especially for larger numbers of states.
train an HMM versus the resulting average log likelihood € first plateau occurs very early on, after just 2 or
of the data. This plot is shown for the HMM built using3 iterations, and then another occurs after 15 to 20
all sequences in the entire data set and for the HMArations, making it difficult to determine how many
built using the sequences that fell into the first clustdierations are necessary and violating tlebustness
according to sequenceMiner. Please note that the resg@straint.
for clusters two through four are similar to those for |, Figure 7 we plot the number of states used for
cluster one and so are not shown here. We can drgqg HMMs versus the average log likelihood of the data
several conclusions from these plots. along with error bars signifying the amount of variation
First of all, using a larger number of states fits the datcross the five runs that were performed for each state.
better, but such a large number of states makes the motlke fact that such variance in the average log likelihood
more difficult to understand since the potential numbexists shows that all of the models are not equal, and
of transitions grows as the square of the number of statebange from run to run, violating thepeatabilityand
Such large and unwieldy models violate tmmprehen- uniquenesgonstraints. Also, even with up to 48 states,
sibility constraint. Second, while using a larger numbéhere is no distinct plateau. This indicates that using
of states causes the average log likelihood to increaseitgreater number of states will not further refine the
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Number of States versus Average Log Likelihood (No Clustering) Number of States versus Average Log Likelihood (Cluster One)

Log Likelihood of Data
Log Likelihood of Data

L L L L L L L L L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of States Number of States

Fig. 7. Plots of the number of states used for training an HMavkus average log likelihood of the data, for both the HMMtbwith no
clustering, and the HMM built from cluster one.

model making it difficult to determine a priori whatis representative of the size of data that are currently
values one should use for the parameters. This violategilable to us. The performance of the algorithm is
the robustnessonstraint. appropriate given the computational complexity derived
In Figure 8 we plot the number of states versus vargarlier.
ance of the average log likelihood of the data across five To eliminate variation in the sequences due to different
runs (in essence, magnitude of the error bars in Figueding procedures at different airports and different
7). These plots show the variance across the 5 runs &¥quences due to different makes of aircraft, we chose
increasing numbers of states. In some cases (such astéoanalyze the data for identical make-and-model aircraft
cluster one), it appears that variance decreases withafding at the same location. This reduced the number of
larger number of states, which infers that there may ligghts under analysis from 7400 to about 2200 flights.
an optimum number of states where the models will fit \we submitted the resulting data to sequenceMiner
the data well, and there will be little difference betweegy discover the top flights with the most anomalous
these models. However, this is not true in all cases, agdhavior. We consulted with a 747 pilot who is famil-
there is still a lot of variance in the variance, violatingar with aircraft landing procedures and asked him to
the robustnessand repeatablilty constraints. analyze the 13 most anomalous flights. Based on his
It is worth noting that HMMs were given an “unfair” post-hoc analysis 5 flights were discovered to contain
advantage by using the clusters already found by Sgad data, 3 were considered normal flights, and 5 were
quenceMiner to train the HMMs. Since sequenceMingbnsidered to have operationally significant anomalies
finds outliers as a byproduct of clustering anyway, on@at have distinct safety implications. We show two

would already know the outliers before starting to traigf sequenceMiner's operationally significant discoveries
the HMMs on the clustered data. Even with these a@gre.

vantages, HMMs are still more cumbersome to use andFigure 9 shows the altitude and airspeed of a real

less reliable than sequenceMiner. commercial jet liner as a function of time to landing. The
vertical bars indicate the locations at which an anomaly
B. Real Data was discovered by sequenceMiner. In the case of this

The clustering and outlier analysis algorithms werdight, sequenceMiner discovers that the engine igniter
used on a data set consisting of the landing phaswitch is pressed at inappropriate locations in the landing
sequence information for 7400 flights. The sequen&equence. In fact, when we discussed this result with
data set consisted of 7400 distinct sequences, varyipgr subject matter expert, he indicated that the flight
widely in length from 800 to over 9000. The averagwas quite anomalous because the igniter is usually not
sequence length was approximately 1500. The number@essed during the landing phase of the aircraft. Notice
distinct symbolsr was around 1100. The sequenceMinghat the switch continues to be depressed even a few
algorithms processed 7400 flights in about 6 minutes ¢ninutes before landing.

a standard Pentium 4 computer with 1 GB of RAM, thus Figure 10 shows another operationally significant dis-
indicating thescalability of the algorithm. This data set covery of sequenceMiner: pilot mode-confusion. Mode
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Number of States versus Variance of Log Likelihood (No Clustering)
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Fig. 8. Plots of the number of states used for training an HMsus

the variance of the average log likelihood of the datasa five runs,

for both the HMM built with no clustering, and the HMM builtdm cluster one.

confusion is a human-factors term that describes the

situation in which an airline pilot is not fully aware
of the configuration of the autopilot. In this case, h

or she switches the mode of the autopilot from one
setting to another, and tests the behavior of the airplan
in order to determine the state of the autopilot. One of the
primary motivations for developing sequenceMiner was
to discover such events. We did not, however, desigr

sequenceMiner to discover only these types of even

It is a general purpose anomaly discovery algorithm.
In this figure, we see the pilot pressing the autopilot
switch numerous times 16 minutes before landing ang
then again 4 minutes and then 1 minute before landin

Our subject matter expert thinks that this was indeed

case of pilot mode-confusion and indicates that it is aBottom p

operationally significant event.
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Fig. 9. This graph shows the altitude (top panel) and thepe@d
(bottom panel) of an anomalous flight as discovered by seghéimer.
The vertical bars indicate the times at which sequenceMiismovered
an anomalous event, in this case, the depression of theesrggiiter
switch. Consultation with a 747 pilot indicated that this swan
operationally significant anomaly.
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Fﬁg 10. This graph shows the altitude (top panel) and thepeed

anel) of an anomalous flight as discovered by sexpMiner.
The vertical bars indicate the times at which sequenceMiismovered
an anomalous event, in this case, the depression of thepd#ato-
switch. Consultation with a 747 pilot indicated that this swan
operationally significant anomaly due to the fact the patiarwhich
this switch is pressed may indicate pilot mode-confusioaca®ise of
the fact that the switches were depressed numerous timesoim, ghe
bars are overlapping in the time scale of minutes.

VII. CONCLUSIONS

This paper describes a system called sequenceMiner,
which is designed with the aim of detecting anomalies
in discrete symbol sequences. It does so by clustering
sequences using the length of the longest common sub-
sequence (LCS) as the similarity measure. We presented
algorithms, based on a Bayesian model of a sequence
cluster, that detect anomalies inside sequences. In do-
ing this, we move beyond what most current anomaly
detection systems achieve by not only predicting which
sequences are anomalous, but by providing explanations
as to why these particular sequences are anomalous.



We demonstrated that the algorithm discovers operae]
tionally significant safety events in real-world data from
commercial aircraft. One of the primary motivations for
developing sequenceMiner was to discover such evemnts)
We did not, however, design sequenceMiner to discover
only these types of events. Our approach is general
and not restricted in any way to a domain, and these)
algorithms can be of interest in other areas such as
anomaly detection and event mining.
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